102 resultados para Optimization of product process

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental programme based on statistical analysis was used for optimizing the reverse Rotation of silica from non-magnetic spiral preconcentrate of Kudremukh iron ore. Flotation of silica with amine and starch as the Rotation reagents was studied to estimate the optimum reagent levels at various mesh of grind. The experiments were first carried out using a two level three factor design. Analysis of the results showed that two parameters namely, the concentration level of the amine collector and the mesh of grind, were significant. Experiments based on an orthogonal design of the hexagonal type were then carried out to determine the effects of these two variables, on recovery and grade of the concentrate. Regression equations have been developed as models. Response contours have been plotted using the 'path of steepest ascent', maximum response has been optimized at 0.27 kg/ton of amine collector, 0.5 kg/ton of starch and mesh of grind of 48.7% passing 300 mesh to give a recovery of 83.43% of Fe in the concentrate containing 66.6% Fe and 2.17% SiO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of two major electrodeposition process conditions, electrolyte bath temperature and current density, on the microstructure and crystallographic texture of pure tin coatings on brass and, ultimately, on the extent of whisker formation have been examined. The grain size of the deposited coatings increased with increasing electrolyte bath temperature and current density, which significantly affected the dominant texture: (211) or (420) was the dominant texture at low current densities whereas, depending on deposition temperature, (200) or (220) became the dominant texture at high current densities. After deposition, coatings were subjected to different environmental conditions, for example isothermal aging (room temperature, 50A degrees C, or 150A degrees C) for up to 90 days and thermal cycling between -25A degrees C and 85A degrees C for 100 cycles, and whisker growth was studied. The Sn coatings with low Miller index planes, for example (200) and (220), and with moderate aging temperature were more prone to whiskering than coating with high Miller index planes, for example (420), and high aging temperature. A processing route involving the optimum combination of current density and deposition temperature is proposed for suppressing whisker growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive Pulsed Laser Deposition is a single step process wherein the ablated elemental metal reacts with a low pressure ambient gas to form a compound. We report here a Secondary Ion Mass Spectrometry based analytical methodology to conduct minimum number of experiments to arrive at optimal process parameters to obtain high quality TiN thin film. Quality of these films was confirmed by electron microscopic analysis. This methodology can be extended for optimization of other process parameters and materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimizing a shell and tube heat exchanger for a given duty is an important and relatively difficult task. There is a need for a simple, general and reliable method for realizing this task. The authors present here one such method for optimizing single phase shell-and-tube heat exchangers with given geometric and thermohydraulic constraints. They discuss the problem in detail. Then they introduce a basic algorithm for optimizing the exchanger. This algorithm is based on data from an earlier study of a large collection of feasible designs generated for different process specifications. The algorithm ensures a near-optimal design satisfying the given heat duty and geometric constraints. The authors also provide several sub-algorithms to satisfy imposed velocity limitations. They illustrate how useful these sub-algorithms are with several examples where the exchanger weight is minimized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000-1400 rpm and traversing speed of 80-240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al-Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (similar to 98% of that of 6061 alloy), which is also maximum with respect to others. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. The research work presented here is based on the processes of synthesizing multiple state mechanical devices carried out individually by ten engineering designers. The designers are asked to think aloud, while carrying out the synthesis. The ten design synthesis processes are video recorded, and the records are transcribed and coded for identifying activities occurring in the synthesis processes, as well as for identifying the inputs to and outputs from the activities. A mathematical representation for specifying multi-state design task is proposed. Further, a descriptive model capturing all the ten synthesis processes is developed and presented in this paper. This will be used to identify the outstanding issues to be resolved before a system for supporting design synthesis of multiple state mechanical devices that is capable of creating a comprehensive variety of solution alternatives could be developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this paper is on designing useful compliant micro-mechanisms of high-aspect-ratio which can be microfabricated by the cost-effective wet etching of (110) orientation silicon (Si) wafers. Wet etching of (110) Si imposes constraints on the geometry of the realized mechanisms because it allows only etch-through in the form of slots parallel to the wafer's flat with a certain minimum length. In this paper, we incorporate this constraint in the topology optimization and obtain compliant designs that meet the specifications on the desired motion for given input forces. Using this design technique and wet etching, we show that we can realize high-aspect-ratio compliant micro-mechanisms. For a (110) Si wafer of 250 µm thickness, the minimum length of the etch opening to get a slot is found to be 866 µm. The minimum achievable width of the slot is limited by the resolution of the lithography process and this can be a very small value. This is studied by conducting trials with different mask layouts on a (110) Si wafer. These constraints are taken care of by using a suitable design parameterization rather than by imposing the constraints explicitly. Topology optimization, as is well known, gives designs using only the essential design specifications. In this work, we show that our technique also gives manufacturable mechanism designs along with lithography mask layouts. Some designs obtained are transferred to lithography masks and mechanisms are fabricated on (110) Si wafers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a novel formulation for performing topology optimization of electrostatically actuated constrained elastic structures. We propose a new electrostatic-elastic formulation that uses the leaky capacitor model and material interpolation to define the material state at every point of a given design domain continuously between conductor and void states. The new formulation accurately captures the physical behavior when the material in between a conductor and a void is present during the iterative process of topology optimization. The method then uses the optimality criteria method to solve the optimization problem by iteratively pushing the state of the domain towards that of a conductor or a void in the appropriate regions. We present examples to illustrate the ability of the method in creating the stiffest structure under electrostatic force for different boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new multi-sensor image registration technique is proposed based on detecting the feature corner points using modified Harris Corner Detector (HDC). These feature points are matched using multi-objective optimization (distance condition and angle criterion) based on Discrete Particle Swarm Optimization (DPSO). This optimization process is more efficient as it considers both the distance and angle criteria to incorporate multi-objective switching in the fitness function. This optimization process helps in picking up three corresponding corner points detected in the sensed and base image and thereby using the affine transformation, the sensed image is aligned with the base image. Further, the results show that the new approach can provide a new dimension in solving multi-sensor image registration problems. From the obtained results, the performance of image registration is evaluated and is concluded that the proposed approach is efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work presents the results of experimental investigation of semi-solid rheocasting of A356 Al alloy using a cooling slope. The experiments have been carried out following Taguchi method of parameter design (orthogonal array of L-9 experiments). Four key process variables (slope angle, pouring temperature, wall temperature, and length of travel of the melt) at three different levels have been considered for the present experimentation. Regression analysis and analysis of variance (ANOVA) has also been performed to develop a mathematical model for degree of sphericity evolution of primary alpha-Al phase and to find the significance and percentage contribution of each process variable towards the final outcome of degree of sphericity, respectively. The best processing condition has been identified for optimum degree of sphericity (0.83) as A(3), B-3, C-2, D-1 i.e., slope angle of 60 degrees, pouring temperature of 650 degrees C, wall temperature 60 degrees C, and 500 mm length of travel of the melt, based on mean response and signal to noise ratio (SNR). ANOVA results shows that the length of travel has maximum impact on degree of sphericity evolution. The predicted sphericity obtained from the developed regression model and the values obtained experimentally are found to be in good agreement with each other. The sphericity values obtained from confirmation experiment, performed at 95% confidence level, ensures that the optimum result is correct and also the confirmation experiment values are within permissible limits. (c) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical optimization of the design parametersN A ,N D andW P has been done for efficient operation of Au-p-n Si solar cell including thermionic field emission, dependence of lifetime and mobility on impurity concentrations, dependence of absorption coefficient on wavelength, variation of barrier height and hence the optimum thickness ofp region with illumination. The optimized design parametersN D =5×1020 m−3,N A =3×1024 m−3 andW P =11.8 nm yield efficiencyη=17.1% (AM0) andη=19.6% (AM1). These are reduced to 14.9% and 17.1% respectively if the metal layer series resistance and transmittance with ZnS antireflection coating are included. A practical value ofW P =97.0 nm gives an efficiency of 12.2% (AM1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous consideration of both performance and reliability issues is important in the choice of computer architectures for real-time aerospace applications. One of the requirements for such a fault-tolerant computer system is the characteristic of graceful degradation. A shared and replicated resources computing system represents such an architecture. In this paper, a combinatorial model is used for the evaluation of the instruction execution rate of a degradable, replicated resources computing system such as a modular multiprocessor system. Next, a method is presented to evaluate the computation reliability of such a system utilizing a reliability graph model and the instruction execution rate. Finally, this computation reliability measure, which simultaneously describes both performance and reliability, is applied as a constraint in an architecture optimization model for such computing systems. Index Terms-Architecture optimization, computation